Hierarchical path-finding for Navigation Meshes (HNA⁎)

نویسندگان

  • Nuria Pelechano
  • Carlos Fuentes
چکیده

Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A* over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Generation of Suboptimal NavMeshes

Most current games perform navigation in virtual environments through A* for path finding combined with a local movement algorithm. Navigation Meshes are the most popular approach to combine path finding with local movement. This paper presents a new Automatic Navigation Mesh Generator (ANavMG) that subdivides any polygon representing the environment, with or without holes, into a suboptimal nu...

متن کامل

A hierarchical non-intrusive algorithm for the generalized finite element method

An algorithm for non-intrusively coupling a commercial finite element software with a research code implementing a hierarchical enrichment of finite element spaces is presented. Examples of hierarchical methods supported by the algorithm are the Generalized or eXtended FEM (GFEM), the scale-bridging GFEM with numerically defined enrichment functions (GFEMgl), and the p-version of the FEM. The p...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

Navigation Queries from Triangular Meshes

Navigation meshes are commonly employed as a practical representation for path planning and other navigation queries in animated virtual environments and computer games. This paper explores the use of triangulations as a navigation mesh, and discusses several useful triangulation–based algorithms and operations: environment modeling and validity, automatic agent placement, tracking moving obsta...

متن کامل

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments

This work presents an artificial intelligence approach to solve the problem of finding a path and creating a map in unknown environments using Reinforcement Learning (RL) and Simultaneous Localization and Mapping (SLAM) for a differential mobile robot along with an optimal control system. We propose the integration of these approaches (two of the most widely used ones) for the implementation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Graphics

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016